最近整理书籍,发现一本笔记本。里面记录着当初电源入门的时候,调试过程中所看到的一些异常现象,以及后来的解决办法。可惜现在已经没有这个好习惯了,其实很多工程师认为设计电源是非常重经验的一门技术,要见多识广。我觉得这种经验,不但体现在设计中,更体现在调试的过程。当你一看到波形,就能把问题定位,那就是最高境界。
一、首先讲讲几个实际项目中遇到的问题(包含十五个项目)
二、再从以下几个方面分享开关电源设计到生产验证的经验
1、BUCK
2、BOOST
3、FLYBACK
4、原理图pcb
5、电源调试
6、各种异常情况
7、安规
8、EMC
9、生产工艺
10、总结
项目一:UC3842控制电路学习板
现象:UC3842供电正常,但是Vref居然不是5V,而是高于5V。解决办法:把管脚重新焊一遍。分析:UC3842的GND脚焊接不良,导致电压浮起来了。需要注意几点。1、元件焊接要仔细,不能发生虚焊,虚焊非常要命,而且不容易看出来。方向不能焊反,尤其是二极管的方向。我曾经焊错过桥式整流二极管的方向,直接导致滤波电解电容加了反压,很危险。2、如果调试中需要飞线,而且是来回信号线,要把去线和回线绞在一起。因为如果去线和回线,形成包围面积的话,就相当于一个天线,很容易串入干扰。3、母线供电不仅要有大的滤波电容,而且要有高频滤波电容。输出时候的滤波也是一样。
项目二:某实验室一台电源坏了,拆开一看,UC3875控制的全桥,需要修理。
现象:初步检查,功率管坏了,由于没有同型号的管子,把所有的管子换成同功率等级的管子。上电之后,输入电压较低的时候,一切正常。当输入电压较高的时候,驱动混乱,频率抖动。解决办法:把功率管的驱动电阻增大,该现象消失,一切正常,电源修好。分析:新的管子寄生参数和旧管不同,在同样的驱动电路下,开关速度会比较快,导致干扰比较大,在高压的时候,干扰大到影响控制电路的工作。
项目三:UC3845双管正激
现象:两个管子关断之后,DS所承受的电压非常悬殊,并非理论上的各自一半。猜测是 MOS的参数不一致导致,把上下管焊下来,交换位置,结果,还是一样。看来和MOS无关。解决办法:调节两管驱动,让他们尽量同时关断,情况略有改善,但还是无法平分电压。分析:这个应该是两个原因引起的,一个是PCB寄生参数的不同导致,两个位置的管子,DS的实际电容有差异。另外一个是,驱动不是很同步关断。
项目四:UC3845控制辅助绕组反馈的反激
现象:主路输出电压在开机的时候有很大过冲。但是,参与反馈的辅助绕组的电压并没有过冲。解决办法:为了可调节调整率,辅组绕组上串联了一个电阻。将这个电阻的阻值减小,主路输出过冲明显减小。分析:由于反馈采样的是辅组绕组,而辅组绕组串联了一个电阻,导致启动的时候,辅组绕组的电压和反馈处的电压,有压差,通过变压器耦合,导致输出电压过冲。
项目五:NCP1014, 光藕反馈反激
现象:人家已经做过的成熟板子,重新焊了一块之后,发现输出稳压不对。解决办法:自作聪明换了其他型号同等基准的431替换原来的bom中431,换回来就好了。分析:原先用的是zetex的431,其最小工作电流是uA级别的,所以设计时基本没考虑最小工作电流。后来替换了TI的431,最小工作电流是1mA,导致工作不正常。
项目六:ICE1PCS01 控制boost PFC
现象:全电压范围,用调压器调节的时候,输入电流波形都很好,高频纹波都很小。惟有在220V输入电压左右时候,输入电流的高频纹波突然变大。大于220V,和小于220V都很小.解决办法:用AC souce 就好,任何电压下高频纹波都比较大,哈哈。分析:用的是自耦调压器,自藕调压是有漏感的,漏感可以把输入高频纹波电流滤掉,但是到220V(网压)的时候,自藕调压器输出端其实就直接和输入端相连了,自然就没有漏感了。
项目七: UC3845双管反激
现象:驱动不稳定,不停的抖动,变压器滋滋叫。调节环路毫无用处,用示波器察看uc3845振荡脚的锯齿波形,发现锯齿波的频率有抖动。UC3845是固定频率的,看来有干扰了。解决办法:把控制电路的地 和 功率地严格分开,然后的单点连接。驱动信号稳定,频率固定,变压器不叫了。但是可恶的是,传导居然变差了。可能传说中的频率抖动,的确对传导有好处。分析:layout在电源设计中很重要,特别是地的布局,功率地和信号地分开,并且单点接地。就是避免高频功率电流流过信号地平面,不然会干扰控制电路。
项目八:UCC3895电流型控制移相控制全桥,加倍流整流
现象:变压器出现偏磁解决办法:把次级功率电路的一根PCB功率走线加粗。该PCB走线连接的是倍流整流电路的某一个电感。偏磁消失~~~~分析:倍流整流电路有个特有的问题,就是两个电感上的平均电流会不一致,如果采用电流型控制的话,控制信号会保证变压器初级的正负电流峰值相同,那么如果变压器次级的正负电流不一致的话,就会导致偏磁出现。而电感平均电流不一致,是因为两个电感的直流阻抗有差异。但实际上,同一批地电感,差别没那么大,反而连接这些电感的PCB走线差异比较大,导致两个电感的实际直流电阻(加上PCB走线的电阻)差异比较大。
项目九:431加光藕反馈反激
现象:输出电压调整率很差,电压随负载的增大明显下降。测量电压采样点和输出脚的电压差并不大。解决办法:在431的基准脚,和阴极之间并一个小电容。调整率立马变好。分析:431的基准脚处受到干扰。
项目十:IR1150 boost PFC
现象:开关频率为100K,但是输入居然有1Khz 纹波电流。X电容还吱吱叫。解决办法:调整EMI滤波器参数。分析:EMI滤波器自己谐振。
项目十一:反激同步整流
现象:同步整流管的电压尖峰非常高,怎么吸收都不行。解决办法:把同步管换成,具有快恢复体二极管的管子分析:由于同步管的体二极管的反向恢复时间太长,导致很大的反向恢复电流。从而引起剧烈电压尖峰。
项目十二:IR1150 PFC
现象:高温测试的时候,MOSFET的壳温才80度,就炸鸡了。先前几台,MOS的壳温到达110度,都安然无事。解决办法:弄出来查原因,是驱动电阻焊错了,本来10R,结果焊成100R.分析:驱动电阻太大导致MOS损耗很大,同样的结到壳热阻,大的功耗会导致大的温差。虽然壳温才80度,但实际结温已经超过了MOS的承受范围。
项目十三:L4981 PFC
现象:空载上电,驱动乱的不得了,震荡频率明显变化。输入电压越高越厉害。开始以为,地线没布好,PCB割了又割,都是不能解决。解决办法:仔细察了一下PCB ,发现有一根功率线立离控制电路比较近,该功率线连接的是MOSFET的D极。把该功率线隔断,让功率电流从远离控制电路的地方绕过去,没用。把靠近控制电路的PCB铜线弄成孤岛,使之成为死铜,干扰消失。分析:电场干扰,MOS的D极是dv/dt很大的地方,产生很大的共模干扰。所以控制电路要尽量远离这个点。
项目十四:返修电源
现象:电源输出,前期查看没问题,又用万用表测二极管的导通,结果一看,输出的几个整流二极管全断了解决办法:焊接好后,电源正常事故分析:在运输过程中和二极管整形安装过程中存在过失。
项目十五:电源不工作
现象:SA7527+358的,客户拿过来给我的,不能工作然后VCC一直处于打隔状态,当时基本上是该查的地方都查了,包括供电啊,替换IC啊,取消次级的所有稳压恒流电路包括光耦的次级端都撬出来了,电源就是没有输出,最后将光耦整个拿掉好了。最后得知是客户拿高压将电源光耦打坏了。
这些年都用到了很多的电源拓扑结构(BUCK,BOOST,FLYBACK,LLC),设计产品,做认证,到量产,设计中和调试时种种意想不到的情况时有发生,算算还是挺有意思的。 下面从10个方面来分享下经验,顺便自己也可以复习一下之前的知识点,有不对的地方还望大家批评指正。
一、BUCK
BUCK电路降压电路输出电压小于输入电压。 调试中碰到的问题,PWM占空比不稳定,大小波,负载切载时输出有抖动,起机过冲,满载起机抖动,批量生产有少量IC损坏。EMC的问题,辐射超标。 1、PWM占空比不稳定,大小波。可以通过调节环路参数来处理,如图上的C2,R2,C1,R1。设计可以参考《开关电源设计第三版》第12章图12.12。对于改这2个参数无效果的那就要反推设计中的电感和电容是否合适,直接点就是看电感的电流波形,采用电感的串并联观察PWM波形变化。另外,IC的占空比如果在极限附近,如占空比90%,工作时达到88%同样也会影响PWM的大小波,这个时候要考虑是否更换占空比更大的IC。 2、切载(满载切空载,空载切满载)时输出有抖动,如振荡2个周期以上,需要调节环路响应。3、起机过冲,更改软启动电容,IC没有软启动电容的情况可以在图纸中RS1上并联电容,或者参考参考书里面软启动方案。 4、满载起机抖动,需调节软启动和反馈电阻电容。也有启动时电感啸叫的,要过电感波形看看是否饱和,需要限制电感电流,更改峰值电流电阻或者改电感。 5、批量生产时,有少量的IC损坏,之前碰到过案例,将IC的BOOT电容端增加一个稳压管解决了。 6、辐射问题也跟整改一般的辐射问题一样,MOSFET驱动电阻增大,MOSFET的DS并联瓷片电容,D极串磁珠,二极管增加RC吸收,串磁珠,输入输出的滤波电感电容。在第三方实验室整改辐射时可以采用套磁扣的方法找出是输入影响还是输出影响,或者找弄个探头测试是哪个元器件出来的干扰,再整改,提高效率。 7、选型需要注意的部分,开关器件都有最大电压和电流的范围,要挂波形看管子的应力是否有余量,如果有-40℃的设计要降额,MOSFET的DS电压会下降,电容的容量下降,ESR增大,高温情况需看电感的参数,外购的电感温度范围一般在85℃,如果电感温度过高,环境温度过高会有匝间短路的风险。
二、boost
BOOST电路做的案子不多,碰到的问题比较少,有用模拟IC做的,也有用单片机做的,感觉这个环路比BUCK容易调整(之前的案子,功率小于60W)。 碰到过很小的体积做LED60W电源,温度不好整,最后用了铁硅铝的磁环搞定了。
三、FLYBACK
FLYBACK这个是小功率电源应用很广泛的拓扑了,大家分析也是特别多的。 我讲讲一款产品从设计到量产过程中的一个流程好了,以及其中碰到的问题和一些经验。
借鉴下NXP的这个TEA1832图纸做个说明。分析里面的电路参数设计与优化并做到认证至量产。 在所有的元器件中尽量选择公司仓库里面的元件,和量大的元件,方便后续降成本拿价格。 贴片电阻采用0603的5%,0805的5%,1%,贴片电容容值越大价格越高,设计时需考虑。 1、输入端,FUSE选择需要考虑到I2T参数。保险丝的分类,快断,慢断,电流,电压值,保险丝的认证是否齐全。保险丝前的安规距离2.5mm以上。设计时尽量放到3mm以上。需考虑打雷击时,保险丝I2T是否有余量,会不会打挂掉。 2、这个图中可以增加个压敏电阻,一般采用14D471,也有采用561的,直径越大抗浪涌电流越大,也有增强版的10S471,14S471等,一般 14D471打1KV,2KV雷击够用了,增加雷击电压就要换成MOV+GDT了。有必要时,压敏电阻外面包个热缩套管。 3、NTC,这个图中可以增加个NTC,有的客户有限制冷启动浪涌电流不超过60A,30A,NTC的另一个目的还可以在雷击时扛部分电压,减下MOSFET的压力。选型时注意NTC的电压,电流,温度等参数。 4、共模电感,传导与辐射很重要的一个滤波元件,共模电感有环形的高导材料5K,7K,0K,12K,15K,常用绕法有分槽绕,并绕,蝶形绕法等,还有UU型,分4个槽的ET型。这个如果能共用老机种的最好,成本考虑,传导辐射测试完成后才能定型。 5、X电容的选择,这个需要与共模电感配合测试传导与辐射才能定容值,一般情况为功率越大X电容越大。 6、如果做认证时有输入L,N的放电时间要求,需要在X电容下放2并2串的电阻给电容放电。 7、桥堆的选择一般需要考虑桥堆能过得浪涌电流,耐压和散热,防止雷击时挂掉。 8、VCC的启动电阻,注意启动电阻的功耗,主要是耐压值,1206的一般耐压200V,0805一般耐压150V,能多留余量比较好。 9、输入滤波电解电容,一般看成本的考虑,输出保持时间的10mS,按照电解电容容值的最小情况80%容值设计,不同厂家和不同的设计经验有点出入,有一点要注意普通的电解电容和扛雷击的电解电容,电解电容的纹波电流关系到电容寿命,这个看品牌和具体的系列了。 10、输入电解电容上有并联一个小瓷片电容,这个平时体现不出来用处,在做传导抗扰度时有效果。 11、RCD吸收部分,R的取值对应MOSFET上的尖峰电压值,如果采用贴片电阻需注意电压降额与功耗。C一般取102/103 1KV的高压瓷片,整改辐射时也有可能会改为薄膜电容效果好。D一般用FR107,FR207,整改辐射时也有改为1N4007的情况或者其他的慢管,或者在D上套磁珠(K5A,K5C等材质)。小功率电源,RC可以采用TVS管替代,如P6KE160等。 12、MOSFET的选择,起机和短路情况需要注意SOA。高温时的电流降额,低温时的电压降额。一般600V2-12A足够用与100W以内的反激,根据成本来权衡选型。整改辐射时很多方法没有效果的时候,换个MOSFET就过了的情况经常有。 13、MOSFET的驱动电阻一般采用10R+20R,阻值大小对应开关速度,效率,温升。这个参数需要整改辐射时调整。 14、MOSFET的GATE到SOURCE端需要增加一个10K-100K的电阻放电。 15、MOSFET的SOURCE到GND之间有个Isense电阻,功率尽量选大,尽量采用绕线无感电阻。功率小,或者有感电阻短路时有遇到过炸机现象。 16、Isense电阻到IC的Isense增加1个RC,取值1K,331,调试时可能有作用,如果采用这个TEA1832电路为参考,增加一个C并联到GND。 17、不同的IC外围引脚参考设计手册即可,根据自己的经验在IC引脚处放滤波电容。 18、更改前:变压器的设计,反激变压器设计论坛里面讨论很多,不多说。还是考虑成本,尽量不在变压器里面加屏蔽层,顶多在变压器外面加个十字屏蔽。变压器一定要验算delta B值,delta B=L*Ipk/(N*Ae),L(uH),Ipk(A),N为初级砸数(T),Ae(mm2)有兴趣验证这个公式可以在最低电压输入,输出负载不断增加,看到变压器饱和波形,饱和时计算结果应该是500mT左右。变压器的VCC辅助绕组尽量用2根以上的线并绕,之前很大批量时有碰到过有几个辅助绕组轻载电压不够或者重载时VCC过压的情况,2跟以上的VCC辅助绕线能尽量耦合更好解决电压差异大这个问题。 18、更改后:变压器的设计,反激变压器设计论坛里面讨论很多,不多说。还是考虑成本,尽量不在变压器里面加屏蔽层,顶多在变压器外面加个十字屏蔽。变压器一定要验算delta B值,防止高温时磁芯饱和。delta B=L*Ipk/(N*Ae),L(uH),Ipk(A),N为初级砸数(T),Ae(mm2)。(参考TDG公司的磁芯特性(100℃)饱和磁通密度 390mT,剩磁55mT,所以ΔB值一般取330mT以内,出现异常情况不饱和,一般取值小于300mT以内。我之前做反激变压器取值都是小于0.3的)附,学习zhangyiping的经验(所以一般的磁通密度选择1500高斯,变压器小的可以选大一些,变压器大的要选小一些,频彔高的减小频彔低的可以大一些吧。) 变压器的VCC辅助绕组尽量用2根以上的线并绕,之前很大批量时有碰到过有几个辅助绕组轻载电压不够或者重载时VCC过压的情况,2跟以上的VCC辅助绕线能尽量耦合更好解决电压差异大这个问题。 附注:有兴趣验证这个公式的话,可以在最低电压输入,输出负载不断增加,看到变压器饱和波形,饱和时计算结果应该是500mT左右(25℃时,饱和磁通密度510mT)。 借鉴TDG的磁芯基本特征图。 19、输出二极管效率要求高时,可以采用超低压降的肖特基二极管,成本要求高时可以用超快恢复二极管。 20、输出二极管并联的RC用于抑制电压尖峰,同时也对辐射有抑制。 21、光耦与431的配合,光耦的二极管两端可以增加一个1K-3K左右的电阻,Vout串联到光耦的电阻取值一般在100欧姆-1K之间。431上的C与RC用于调整环路稳定,动态响应等。 22、Vout的检测电阻需要有1mA左右的电流,电流太小输出误差大,电流太大,影响待机功耗。 23、输出电容选择,输出电容的纹波电流大约等于输出电流,在选择电容时纹波电流放大1.2倍以上考虑。 24、2个输出电容之间可以增加一个小电感,有助于抑制辐射干扰,有了小电感后,第一个输出电容的纹波电流就会比第二个输出电容的纹波电流大很多,所以很多电路里面第一个电容容量大,第二个电容容量较小。 25、输出Vout端可以增加一个共模电感与104电容并联,有助于传导与辐射,还能降低纹波峰峰值。 26、需要做恒流的情况可以采用专业芯片,AP4310或者TSM103等类似芯片做,用431+358都行,注意VCC的电压范围,环路调节也差不多。 27、有多路输出负载情况的话,电源的主反馈电路一定要有固定输出,或者假负载,否则会因为耦合,burst模式等问题导致其他路输出电压不稳定。 28、初级次级的大地之间有接个Y电容,一般容量小于或等于222,则漏电流小于 0.25mA,不同的产品认证对漏电流是有要求的,需注意。 算下来这么多,电子元器件基本能定型了,整个初略的BOM可以评审并参考报价了。 BOM中元器件可以多放几个品牌方便核成本。如客户有特殊要求,可以在电路里面增加功能电路实现。如不能实现,寻找新的IC来完成,相等功率和频率下,IC的更改对外围器件影响不大。如客户温度范围的要求比较高,对应元器件的选项需要参考元器件使用温度和降额使用。
四、原理图/pcb
1、PCB对应的SCH网络要对应,方便后续更新,花不了多少时间的。 2、PCB的元器件封装,标准库里面的按实际情况需要更改,贴片元件焊盘加大;插件元件的孔径比元件管脚大0.3mm,焊盘直径大于孔0.8mm以上,焊盘大些方便焊接,元器件过波峰焊也容易上锡,PCB厂家做出来也不容易破孔。还有很多细节的东西多了解些对生产是很大的功劳啊。 3、安规的要求在PCB上的体现,保险丝的安规输入到输出距离3mm以上,保险丝带型号需要印在PCB上。PCB的板材也有不同的安规要求,对应需要做的认证与供应商沟通能否满足要求。相应的认证编号需印到PCB上。初级到次级的距离8mm以上,Y电容注意选择Y1还是Y2的,跨距也要求8mm以上,变压器的初级与次级,用挡墙或者次级用三层绝缘线飞线等方法做爬电距离。 4、桥堆前L,N走线距离2.5mm以上,桥堆后高压+,-距离2.5mm以上。走线为大电流回路先走,面积越小越好。信号线远离大电流走线,避免干扰,IC信号检测部分的滤波电容靠近IC,信号地与功率地分开走,星形接地,或者单点接地,最后汇总到大电容的“-”引脚,避免调试时信号受干扰,或者抗扰度出状况。 5、IC方向,贴片元器件的方向,尽量放到整排整列,方便过波峰焊上锡,提高产线效率,避免阴影效应,连锡,虚焊等问题出现。 6、打AI的元器件需要根据相应的规则放置元器件,之前看过一个日本的PCB,焊盘做成水滴状,AI元件的引脚刚好在水滴状的焊盘上,很漂亮。 7、PCB上的走线对辐射影响比较大,可以参考相关书籍。还有1种情况,PCB当单面板布线,弄完后,在顶层敷整块铜皮接大电容地,抑制传导和辐射很有效果。 8、布线时,还需要考虑雷击,ESD时或其他干扰的电流路径,会不会影响IC。
五、调试
PCB与元器件回来就可以开始制样做功能调试了。 1、万用表先测试主电流回路上的二极管,MOSFET,有没有短路,有没有装反,变压器的感量与漏感是否都有测试,变压器同名端有没有绕错。 2、开始上电,我的习惯是先上100V的低压,PWM没有输出。用示波器看VCC,PWM脚,VCC上升到启动电压,PWM没有输出。检查各引脚的保护功能是否被触发,或者参数不对。找不到问题,查看IC的上电时序图,或者IC的datasheet里面IC启动的条件。示波器使用时需注意,3芯插头的地线要拔掉,不拔掉的话最好采用隔离探头挂波形,要不